
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Redesign of gStore System

Li ZENG, Lei ZOU

Peking University, Beijing, 100871, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract gStore [1] is an open-source native RDF
(Resource Description Framework) triple store, which
answers SPARQL queries by subgraph matching over RDF
graphs. However, there are some deficiencies in the original
system design, such as answering simple queries (such as
one-triple pattern query). To improve the system’s efficiency,
we re-consider the system design in this paper. Specifically,
we propose a new query plan generation module, which
generates different query plans according to the query
graphs’ structures. Furthermore, we re-design our vertex
encoding strategy to achieve more pruning power and a new
multi-join algorithm to speed up subgraph matching process.
Extensive experiments on synthetic and real RDF datasets
show that our method outperforms the state-of-the-art
algorithms significantly.

Keywords Graph Database, Subgraph Matching, RDF
Management, SPARQL Query

1 Introduction

The RDF (Resource Description Framework) data model
was originally proposed by W3C for modeling Web objects
as a part of developing the Semantic Web. However, it is
now used beyond that. RDF has further gained popularity
due to the launching of “knowledge graph” by Google in
2012. An RDF dataset is a collection of triples of the form
〈subject, property, object〉. A triple can be naturally seen as a
pair of entities connected by a named relationship or an
entity associated with a named attribute value. In contrast to
relational databases, an RDF dataset is self-describing and

Received month dd, yyyy; accepted month dd, yyyy

E-mail: {zengli-bookug, zoulei}@pku.edu.cn; Corresponding author: Lei
Zou

does not need to have a schema (although one can be defined
using RDFS). The simplicity of this representation makes it
easy to use RDF for modeling various types of data and
favors data integration.

There exist many large-scale RDF datasets, e.g.,
Freebase [2] has 2.5 billion triples and DBpeida [3] has over
1.1 billion triples . The large volume of RDF repository
requires efficient RDF data management systems. Generally,
there are two typical approaches to design these systems:
relational approaches [4–6] and graph-based
approaches [1, 7]. The former maps RDF data to a tabular
representation in a number of ways and then executes
SPARQL queries on them – sometimes mapping SPARQL
queries to SQL.

The second major category is graph-based, which models
both RDF data and the SPARQL query as a graph and
evaluate the query by subgraph matching using
homomorphism, e.g., [1, 7–9]. The advantage of this
approach is that it maintains the original representation of
the RDF data and enforces the intended semantics of
SPARQL. Also, some graph database techniques, such as the
structure-aware indices [1, 8] and graph-based query
algorithms [7], are more suitable for RDF data.

Our earlier work, gStore [1, 8], is a graph-based RDF data
management system (or what is commonly called a “triple
store”) that maintains the graph structure of the original
RDF data. Its data model is a labeled, directed multiedge
graph (called RDF graph – See Figure 1 and Table 1), where
each vertex corresponds to a subject or an object. We also
use a query graph Q (see Figure 2 and Listing 1) to represent
a SPARQL query. Query processing involves finding
subgraph matches of Q over the RDF graph G. gStore
incorporates an index over the RDF graph (called VS∗-tree)
to speed up query processing. VS∗-tree is a height-balanced

2
Li ZENG et al.

tree with a number of associated pruning techniques to speed
up subgraph matching. According to our experiment
analysis and other related work [10], gStore is faster than
other comparative systems, such as Apache-Jena, Virtuoso
and RDF-3x, in complex SPARQL queries. The reason is
that gStore uses the whole query graph’s structure to reduce
the search space, but other systems (such as Jena and
Virtuoso) utilize step-by-step relational join strategy without
considering structure-aware pruning. However, gStore is not
good at simple SPARQL queries, e.g., one-triple pattern
queries, which occupy a large proportion of practical
knowledge graph applications’ query workloads. Generally
speaking, there are three limitations in the original gStore
design.

1. Rigid Framework. gStore uses “filter-and-join”
framework for all kinds of queries, which does not
consider queries’ structures. Obviously, if a query
contains a single triple pattern, it is easy to figure out
the answers by using key-value store directly, without
going through “filter-and-join” pipeline.

2. Vertex Signature Coding Strategy. As we know,
gStore’s pruning power depends on the vertex signature
compression. However, the original signature coding
strategy decreases its pruning power as the dataset size
increases, resulting in more cost in join process.

3. Naive Join Method. The original join method is a simple
BFS-like search to find subgraph isomorphisms, which
doesn’t consider any pruning strategy in the searching
process.

1.1 Our Contributions

Considering the above shortcomings of the original gStore
system design, we propose several optimization techniques
in this work and re-design gStore to deal with datasets in size
of billions. Note that this paper concentrates on BGP (Basic
Graph Pattern). Although our current released gStore system
can support OPTIONAL, UNION, FILTER and aggregation
syntax, these are not the focus of this paper. In particular,
we integrate the proposed optimization techniques with the
original gStore system on GitHub. Generally, we propose the
following three optimization solutions.

First, we introduce “Strategy” module to generate
different query plans considering different kinds of query
graph structures, which avoids the rigid framework in the
original gStore design. Given a query graph Q, this module
decides if it goes through the “filter-and-join” framework
according to the query graph structure. Even for queries that

need to go through such framework, we also divide the
vertices in Q into different categories based on the
neighborhood structure. Each category generates different
query plans.

We also design a new vertex signature encoding method
to improve the pruning power of the VS∗-tree. As we know,
the more powerful the vertex signature encoding is, the
fewer candidates will be generated after the VS∗-tree
filtering. Consequently, it will lead to a big performance
gain in the total query response time. In this paper, we adopt
several methods to reduce conflicts in vertices’ signatures.
On one hand, entities and literals are divided apart, and
incoming and outgoing edges are also separated. On the
other hand, an entity or a literal is combined with the
corresponding edge, to describe the restrictions more
precisely.

Furthermore, a new join strategy is proposed to accelerate
the join process, i.e. multi-join strategy. This strategy
generates a processing order based on a heuristic method to
prune unpromising intermediate results as early as possible.
Specifically, the multi-join strategy uses A* search instead
of breadth-first search so that we can utilize the restrictions
of several edges simultaneously. Experimental results show
that the new join strategy reduces the time cost a lot and
lowers the space cost as well.

The rest of the paper is organized as follows: We formally
define the preliminary concepts in Section 2. Section 3 is an
overview of the proposed approach and explains the
intuition behind it. The query plan selection in this general
framework is presented in Section 4, and Section 5
introduces the new encoding method of signature.
Optimizations of Join module is detailed in Section 6. The
result of experiments is presented in Section 7. Finally, we
survey the related work in Section 8 and conclude in Section
9. Queries used for experiments are listed in Appendix.

2 Problem Definition

In this section, we review the terminology that we use
throughout this paper. As mentioned earlier, this paper only
studies BGP (Basic Graph Pattern) queries, which are
essentially subgraph homomorphism between query graph Q
and data graph G, as defined as follows. Table 2 shows some
frequently-used notations.

Definition 1 RDF dataset. Let pairwise disjoint infinite sets
I, B, and L denote URI, blank nodes and literals, respectively.

Front. Comput. Sci.
3

subject predicate object

<Mike> <BornIn> <Washington>

<Mike> <Mother> <Alice>

<Mike> <Friend> <Lucy>

<Mike> <Friend> <Bob>

<Mike> <Teacher> <T1>

<Mike> <Teacher> <T2>

...
<Mike> <Teacher> <T100>

<Lucy> <Friend> <Bob>

<Bob> <Height> "175"
<Bob> <Age> "22"
<T1> <FatherOf> <Bob>

<T1> <Graduate> <PKU>

<T2> <Graduate> <PKU>

...
<T100> <Graduate> <PKU>

<PKU> <Type> <School>

Table 1 rdf table

An RDF dataset is a collection of triples, each of which is
denoted as t(sub ject, property, ob ject) ∈ (I ∪ B) × I × (I ∪
B ∪ L).

A triple can be naturally seen as a pair of nodes connected
by a named relationship. Hence, an RDF dataset can be
represented as a data graph where subjects and objects are
vertices, and triples are edges with property names as edge
labels. Note that there may exist more than one property
between a subject and an object, that is, multiple-edges may
exist between two vertices in an RDF graph.

Definition 2 RDF graph . An RDF graph is a four-tuple
G = 〈V, LV , E, LE〉, where

1. V = Vc ∪ Ve ∪ Vb ∪ Vl is a collection of vertices that
correspond to all subjects and objects in RDF data,
where Vc, Ve, Vb and Vl are collections of class vertices,
entity vertices, blank vertices and literal vertices,
respectively.

2. LV is a collection of vertex labels. Given a vertex u ∈ Vl,
its vertex label is its literal value. Given a vertex u ∈
Vc ∪ Ve, its vertex label is its corresponding URI. The
vertex label of a vertex in Vb (blank node) is NULL.

3. E is a collection of directed edges {−−−→ui, u j} that connect
the corresponding subjects (ui) and objects (u j) .

4. LE is a collection of edge labels. Given an edge e ∈ E,
its edge label is its corresponding property.

An edge −−→uiu j is an attribute property edge if u j ∈ Vl;
otherwise, it is a link edge. �

Definition 3 (Basic Graph Pattern). A basic graph pattern

Fig. 1 Example Data Graph

Fig. 2 Example Query Graph

is a connected graph, denoted as Q = {V(Q), E(Q)}, such
that (1) V(Q) ⊆ (I ∪ L ∪ VVar) is a set of vertices, where I
denotes URI, L denotes literals and VVar is a set of variables;
(2) E(Q) ⊆ V(Q) × V(Q) is a set of edges in Q; and (3) each
edge e in E(Q) either has an edge label in I (i.e., property) or
the edge label is a variable.

A data graph G and a BGP (basic graph pattern) queries
are given in Figure 1 and 2, respectively, which are used as
running examples throughout this paper. The corresponding
RDF triples (subject, predicate, object) of the data graph are
displayed in Table 2. In the data graph, <T1>, <T2>,
...<T100> are all teachers, each with edge labels <Teacher>
and <Graduate>. However, only <T1> has an edge label
<FatherOf>. A match of BGP over RDF graph is defined as
a partial function µ from VVar to the vertices in the RDF
graph. Formally, we define the match as follows:

Definition 4 (BGP Match) Consider an RDF graph G and a
connected query graph Q that has n vertices {v1, ..., vn}. A

4
Li ZENG et al.

Listing 1 core-satellite query

SELECT ?p1 ?p3 ?age WHERE
{
?p1 <BornIn> ?country .
?p1 <Friend> <Lucy> .
?p1 <Mother> <Alice> .
?p1 <Friend> ?p2 .
?p1 <Teacher> ?p3 .
?p2 <FatherOf> ?p3 .
?p2 <Height> "175" .
?p2 <Age> ?age .
<Lucy> <Friend> ?p2 .
?p3 <Graduate> ?school .
?school <Type> <School> .
}

subgraph M with m vertices {u1, ..., um} (in G) is said to be a
match of Q if and only if there exists a function µ from
{v1, ..., vn} to {u1, ..., um} (n > m), where the following
conditions hold:

1. if vi is not a variable, µ(vi) and vi have the same URI or
literal value (1 6 i 6 n);

2. if vi is a variable, there is no constraint over µ(vi) except
that µ(vi) ∈ {u1, ..., um};

3. if there exists an edge −−→viv j in Q, there also exists an

edge
−−−−−−−−→
µ(vi)µ(v j) in G; furthermore,

−−−−−−−−→
µ(vi)µ(v j) has the

same property as −−→viv j unless that the label of −−→viv j is a
variable.

The problem that we studied in this paper is defined as
follows:

Problem Statement. Given an RDF graph G and a BGP
query graph Q, where |V(Q)| � |V(G)| and |E(Q)| � |E(G)|,
our problem is to find all BGP matches (Definition 4) of Q in
G.

In this paper, we assume that query graph Q are always
connected; otherwise, all connected components are
considered separately. In addition, for the convenience of the
presentation, we do not consider the case that an edge’s label
is a variable in the query graph, though such cases can be
handled easily by our system. In the rest of this paper, we
use E(G) to denote the edge set of the data graph. Besides,
we say (s, p, o) ∈ E(G) if s and o is connected in G and this
edge’s label is p(p is called the property in RDF dataset, also
called predicate).

Table 2 Notations
G,Q Data graph and query graph, respectively
v, u Vertex in query graph and data graph, re-

spectively
−→
vv′ Single edge with v and v′ being the end

points
S ig(v), S ig(u) encoding of vertex v or u

N(v),N(u) all neighbors of vertex v or u
C(v) all vertices in data graph that match the cri-

teria associated with vertex v
Core(Q) variables whose degree is bigger than 1 in

query graph Q
S at(Q) variables which are selected(and degree is

1) in query graph Q
Iso(Q) variables which are not selected(and degree

is 1) in query graph Q
MRT the intermediate result table, each row rep-

resents a record, each column correspond-
ings to a query variable

|P(G)| the number of all different predicates in G

3 System Architecture

Figure 3 presents the whole system architecture of gStore,
which consists of two stages (offline and online). The new
gStore has the exactly same offline framework with the
original design except for the new vertex-encoding strategy,
while the new version introduces one more module
(“Strategy” module) for query plan generation and updates
the “Join” module. The new added/updated modules are
highlighted in red font. To make the paper self-contained,
we present the whole architecture but underline the new
added/updated modules.

The offline process is to store an RDF dataset and build
the VS∗-tree index. We describe the main components (as
shown in Figure 3): RDF parser accepts three popular RDF
file formats (RDF/XML, N3, Turtle). The parsing result is a
collection of RDF triples. Based on the parsed triples, we
build an RDF graph using adjacency list representation,
where each entity is a vertex (represented by its URI) and
the incident edges to the vertex correspond to the triples
containing the entity. We use a key-value store to index the
adjacency lists, where URIs are keys. In the encode module,
we encode the RDF graph G into a signature graph G∗.
Specifically, each vertex in G∗ has a bitstring that encodes
the neighborhood structure around the vertex. Different from
the original design, the new vertex coding strategy considers
the more fine-grained neighbor features around one vertex.

Finally, VS∗-tree builder is to construct a VS∗-tree over

Front. Comput. Sci.
5

G∗. The signature graph G∗ and the VS∗-tree are stored in
key-value store and VS∗-tree store, respectively.

Fig. 3 System Architecture

At the online stage, a SPARQL statement is an input to
the SPARQL parser, which is generated by a parser
generator library called ANTLR3. The SPARQL query is
parsed into a syntax tree, based on which, we build a query
graph Q and encode it into a query signature graph Q∗. The
encoding strategy is analogue to encoding RDF graphs, and
the details of encoding will be talked in Section 5. Different
from the original design, the new added module “Strategy”
will generate the query plan based on the query graph’s
structure. For example, if a query is simple (e.g., one triple
pattern), it will not go through the “filter-and-join”
framework. Even for the queries that need to go through
such framework, we also generate different query plans
considering the query graph’ structures. More details about
“Strategy” module are given in Section 4. Furthermore, we
also optimize the join strategy (Section 6) in the new gStore
design.

4 Query Plan Selection

In the old gStore system, “filter and join” strategy is used for
all SPARQL queries. It uses VS∗-tree to get candidates for
each query variable first, then all variables are joined on the
specified predicate to verify the candidates. However, for
one-triple queries, we can get their results immediately
using key-value store. In such cases, we do not have to
consider the cost of VS∗-tree module and Join module if we

choose to use key-value store instead of the old strategy.

In addition, in the original “filter and join” strategy, we
need to find candidates for every variable of a query, and all
variables will participate in the join process. VS∗-tree is
good at pruning candidates for vertices which have many
restrictions, so if a variable has few edges and few constant
neighbors, then the performance of pruning will weaken a
lot.

As it can be seen in Figure 3, we add a Strategy module to
generate a good query plan, and the details are as follow.

4.1 Special Structure

If there is only one triple in a query graph Q, then we should
answer this query directly using key-value store. These spe-
cial structures can be divided into three categories:

Listing 2 special: p2so

SELECT ?s ?o WHERE
{

?s <Friend> ?o .
}

Listing 3 special: p2s

SELECT ?s WHERE
{

?s <Friend> ?o .
}

Listing 4 special: sp2o

SELECT ?o WHERE
{

<Mike> <Friend> ?o .
}

Listing 2 is answered via key-value store(key is the
predicate, value is the subject-object list), and gStore return
the results directly. Listing 3 means that there are two
variables in the query, but only one is selected. If the
selected one is a subject, then key is the predicate while
value is the subject list; if the selected one is an object, then
value is the object list instead(key is also the predicate).

Listing 4 means that there is only one variable in the query,
and it is out of question the selected one. If this variable is
a subject, then we use key-value store to get its results with
(object, predicate) pair as key and subject list as value; if this
variable is an object, then use (subject, predicate) pair as key
and object list as value instead.

Cases discussed above all neglect the “filter and join”
framework, and use key-value store directly. Theoretically

6
Li ZENG et al.

this will harvest a big gain in performance, because the cost
of filtering and table join is discarded. Experiments show
that this strategy behaves well on 1-triple queries, but when
dealing with more triples, “filter and join” framework shall
be applied.

4.2 General Case

To deal with general cases, we design a new “filter and join”
framework which is very different from the older one. We
consider the structure of a query graph and divide the
variables of this query into several categories: S at(Q),
Iso(Q) and Core(Q). Given a query variables v, if v’s degree
is greater than 1, then v ∈ Core(Q). Otherwise, v belongs to
S at(Q) if v is in the select-clause, i.e. v is selected and
should be present at the query result. If v is not selected,
then v ∈ Iso(Q). In the new framework, we use different
strategies for Core(Q), S at(Q) and Iso(Q).

Given the SPARQL query in Figure 2 and Listing 1, only
?p1, ?p3 and ?school are selected. The content of all sets are
listed below:

• S at(Q): ?age
• Core(Q): ?p1, ?p2, ?p3, ?school
• Iso(Q): ?country

The new algorithm is given in Algorithm 1. When dealing
with general cases, we only retrieve candidates for variables
in Core(Q). VS∗-tree finishes this process and the cost is
expected to be low. For the query in Figure 2, gStore
generates candidate sets for ?p1, ?p2, ?p3 and ?school, and
the candidate sets are named C(?p1), C(?p2), C(?p3) and
C(?school).

After that, we join the candidates of all variables in
Core(Q) on corresponding edges. We use MRT to store the
temporary results in the join process, and each column of
MRT represents all mapping vertices of a query variable.
Each row of MRT is a partial answer, named ans, and the
mapping vertex of a query variable v in this answer can be
denoted as ans[v]. For example, in the example query gStore
joins ?p1, ?p2, ?p3 and ?school one by one. After these 4
variables are joined, the partial result is placed in MRT .

Later, we consider the restricitions of variables in Iso(Q).
Notice that a variable v in Iso(Q) must be linked to one and
only one variable in Core(Q). We call this variable v0 and
the edge between v0 and v is named r0. The candidate set of
v0(called C(v0)) should all have an edge with a label r0, which
is viewed as a restriction to prune the partial result MRT . In
Figure 2, ?country is in Iso(Q), and the edge <BornIn> is
used to prune the partial result MRT . No need to generate

Table 3 Partial Result
?p1 ?p2 ?p3 ?school

<Mike> <Bob> <T1> <PKU>

Table 4 Final Result
?p1 ?p3 ?age

<Mike> <T1> "22"

results for ?country, but all records of MRT should satisfy
the restriction of <BornIn>. After this step, the content of
MRT is given in Table 3.

Finally, we generate results for each variable sv in S at(Q)
from MRT directly because sv is also linked to one and only
one variable in Core(Q). Assume the variable it links to is
named v1, then v1 must be in Core(Q). For each record in
the partial result MRT , we start from the mapping vertex of
v1 to get the results of sv using key-value store. For
example, in Figure 2 ?age’s results are generated by calling
key-value store from all mapping vertices of ?p3 in
MRT (the corresponding predicate is <Age>). The final
result is given in Table 4, notice that only the results of
selected variables need to be saved in the end.

The point is that gStore does not need to join all variables
now, which will save a lot of time because the cost is usually
high. Besides, there is no need to retrieve candidates for
variables in Iso(Q) and join them, because we do not want to
get the results of these variables. As for variables in S at(Q),
also no need for such moves, we just generate their results at
last by key-value store. To sum up, the new framework will
harvest a great improvement in the system’s performance.

By now we have selected a query plan to run according
to the query’s structure, later we will need to optimize the
“filter and join” framework. In the next two sections, we will
discuss how to improve the VS∗-tree and speed up the join
process respectively.

5 A New Encoding Method

As mentioned in previous sections, we need to retrieve
candidates for each query variable in Core(Q). The filtering
strategy is VS∗-tree [1], an index tree which is made up of
all vertices’ signatures. We have indicated in Section 3, that
the efficiency of VS∗-tree is very crucial because it has great
influence on the cost of the join process. If the VS∗-tree is
not efficient, then the number of candidates will be very big.
As a result, it will be extremely costly to join the candidates
of variables because we must enumerate all candidates to

Front. Comput. Sci.
7

Algorithm 1 Query Plan Selection
Input: query graph Q, empty MRT .
Output: final result in MRT .
1: if Q is 1-triple graph then
2: get the final results using key-value store and put them into

MRT ;
3: return MRT ;
4: for all var in Core(Q) do
5: get C(var) by VS∗-tree;
6: if C(var) is empty then
7: return empty MRT ;
8: use Algorithm 2 to join all results of variables in Core(Q);
9: filter the MRT using edges linking to variables in Iso(Q);

10: generate the results of variables in S at(Q) from MRT ;
11: return the final result MRT ;

check if they satisfy the restrictions of the linking edge.
To improve the efficiency of VS∗-tree is to improve the

precision of the encoding. Notice that we don’t care much
about the cost of VS∗-tree, and it is the filtering efficiency
that really matters. For a veretx v in query graph, we denote
its neighbor set as N(v) and its encoding as S ig(v). Similarly,
for a veretx u in data graph, we denote its neighbor set as
N(u) and its encoding as S ig(u). In the VS∗-tree, we check if
a veretx u in data graph G can be matched to a variable v in
query graph Q by comparing their encoding, i.e. S ig(u) and
S ig(v). The encoding contains the information of neighbors,
and u and v are matched only when S ig(u) & S ig(v) = S ig(v).

Aiming to reduce the number of candidates, the
encoding’s structure must be optimized to describe
neighbors’ information more precisely. A vertex can have
many neighbors, however, we only have a limited length for
its signature. Therefore, a hash function is used to map a
neighbor’s information(including predicate, entity or literal)
to some bits of the signature. To distinguish between
different vertices in data graph, we must consider any subtle
differences in their neighbors. As a result, our goal is to
lower the conflict between different neighbors, then different
vertices’ encodings are expected to be different.

In the original encoding method, a vertex’s encoding is
divided into two parts: string part and edge part. The first
part is used to encode the linking neighbors(entity or literal),
while the second part is used to encode the linking
edges(i.e., predicates). We used to assign 590 bits for string
signature, and 354 bits for edge signature. Notice that these
two parts don’t conflict with each other, and the original
signature’s structure is given in Figure 4.

In order to improve the signature, firstly we divide the
whole structure into more parts to reduce the conflicts.
Secondly, we bind each edge with the neighbor

Fig. 4 the old structure of a signature

corresponding to it. These two optimizations are presented
in the subsections below.

5.1 Divide the signature

Signature is already divided into two parts in the original
structure, i.e. string part and edge part. However, this is not
enough. In Figure 2, query variables ?p1 and ?p2 both have
an edge whose label is <Friend>. This predicate will be
encoded into the edge part of the encoding for ?p1, as well
as ?p2. The problem is that the two encodings will be totally
the same(now we focus on this predicate, i.e. <Friend>), but
they are different in fact. Our solution is to divide the edge
part into two subparts: in-edge part(100 bits, denoted as
“in-edge” in Figure 5) and out-edge part(100 bits, denoted as
“out-edge” in Figure 5). <Friend> is encoded into the
out-edge part in ?p1’s signature, and the in-edge part in
?p2’s signature. By this way, their signatures will be
different and more precise. After filtered by VS∗-tree, there
will be fewer candidates for variables ?p1 and ?p2.

Besides, a neighbor can be either an entity or a literal, and
we do not want to see that entities conflict with literals.
Considering variable ?p2 in Figure 2, in the old encoding’s
structure, both <Lucy> and "175" will be encoded into the
string part, which may bring conflicts due to the hash
function. So we divide the string part into two subparts:
entity part(400 bits) and literal part(200 bits). All entities are
encoded into the entity part while literals are encoded into
the literal part. For example, <Lucy> is encoded into the
entity part in ?p2’s signature while "175" into the literal part.

What’s more, for a neighbor which is an entity instead of
a literal, it can be linked by either an incoming or outgoing
edge. Just like the query in Figure 2, if we encode <Lucy>

into ?p1’s signature and ?p2’s signature directly, then there
will be no difference between the encoding result of <Lucy>

in the two signatures. So we choose to divide the entity part
into two subparts: incoming-entity part(denoted as
“in-entity” in Figure 5) and outgoing-entity part(denoted as
“out-entity” in Figure 5). An entity should be encoded into
either incoming-entity part or outgoing-entity part according
to the corresponding edge’s direction. In this example,
<Lucy> is encoded into the incoming-entity part in ?p2’s

8
Li ZENG et al.

signature and it is encoded into the outgoing-part in ?p1’s
signature.

5.2 Bind edge with neighbor

We have discussed earlier that the encoding should be
divided into more parts to reduce the conflicts, and improve
the efficiency of the filter. As a matter of fact, that’s not
enough. Considering variable ?p1 in Figure 2, <Alice> and
<Lucy> are encoded into ?p1’s outgoing-entity part while
<Mother> and <Friend> into ?p1’s out-edge part. We
change ?p1’s neighbors to get a new query in Listing 5.

Listing 5 encode example

SELECT ?p1 WHERE
{
?p1 <Mother> <Lucy> .
?p1 <Friend> <Alice> .
}

The new query’s answer is empty if searched in Table 2.
However, using current encoding method, C(?p1) will not be
empty because it will contain <Mike>. The point is that we
don’t bind the edge with the corresponding neighbor, so
?p1’s signature in the new query is almost the same as ?p1’s
signature in Figure 2. In the new query, <Friend> should be
combined with <Alice>, while <Mother> combined with
<Lucy>.

Therefore, we append a new part to the current signature,
named as neighbor-edge part. As mentioned before, entity
and literal should be divided. In addition, edges with
different directions should also be divided. So we divide the
new part into three subparts: entity-edge-incoming
part(denoted as “entity-in” in Figure 5),
entity-edge-outgoing part(denoted as “entity-out” in Figure
5), and literal-edge part(denoted as “literal-edge” in Figure
5). Each subpart occupies 48 bits, so the total length of the
signature is 944 bits.

For string part and edge part, we can use a hash function to
map the entity/literal/predicate to a bit in the signature. But
for the neighbor-edge part, given a (neighbor, edge) pair, how
can we map it to the signature? The solution is provided by a
paper [11], which introduces a special function.

Definition 5 Binding Function. The binding function is
denoted as f (x, y) = x + (x + y + 1) × (x + y)/2, assuming
that(x, y) is a (neighbor, edge) pair.

It is proved in [11] that f (x1, y1) , f (x2, y2), ∀(x1, y1) ,
(x2, y2). Notice that the value of f (x, y) may be very large,
while encoding’s length is limited. So we have to define a
mapping function as follows:

Definition 6 Mapping Function. The mapping function is
denoted as g(x, y) = f (x, y)%48, assuming that(x, y) is a
(neighbor, edge) pair.

For each (neighbor, edge) pair, we use g(x, y) to encode it
into one bit in the neighbor-edge part.

Fig. 5 the new structure of a signature

To sum up, the whole structure of the new signature is
given in Figure 5, and it is discovered that new signature’s
length is the same as that of the old one. Our experiments
show that the new encoding method is more efficient than
the old one, while the cost of VS∗-tree is a little higher.

6 Optimizations of Join Strategy

After the VS∗-tree, candidates are already acquired for
variables in Core(Q). Now for all variables in Core(Q), they
need to be joined on the corresponding edges. The definition
of joining two variables is given in Definition 7, and the
details are given in Algorithm 3.

Definition 7 Join Two Variables. Given a data graph G and
two variables v1 and v2 in query graph Q, the join process is
to find all valid pairs (s,o), s ∈ C(v1), o ∈ C(v2) and (s, p, o) ∈
E(G).(p is the predicate linking v1 and v2 in the query graph)

It must be emphasized that the time cost of join process
is almost always the highest part when answering a query.
However, it’s hard to estimate the cost because the result’s
size is not known before two variables are joined.

To solve this problem, a heuristic algorithm named as
Multi-Join is designed in this paper. Firstly, we describe the
basic idea of original join strategy and analyze its
shortcomings. Secondly, we introduce the new join strategy,
i.e. Multi-Join, and give the pseudo code. Thirdly, we
compare the new strategy with the old one and explain why
the new strategy is better.

6.1 Original Strategy

In the original join strategy, join process starts from the
variable with a minimal number of candidates. Next, it

Front. Comput. Sci.
9

Table 5 Join Result
?p1 ?p2 ?p3 ?school

<Mike> <Bob> <T1> <PKU>

traverses the query graph in a BFS(Breadth First Search)
order, joins remaining variables one by one and stores partial
results in MRT .

In the original join process, two cases should be discussed
when considering an edge:
1. two variables v1 and v2 are already in MRT : for each
answer in MRT , consider the edge linking two variables
using key-value store.
2. only one variable v1 in MRT : for each answer in MRT ,
generate another candidate set of v2 from v1 using key-value
store, and intersect the new candidate set with C(v2).

When scaling the cost of join process, we don’t care
about the memory cost but focus on the time cost, which is
mainly constituted by two parts: intersection cost and IO
cost. The intersection cost is influenced by the size and
structure of the lists, which is hard to estimate. However, in
real cases, time cost is almost determined by IO cost, which
is determined by the times of calling key-value store(the join
process calls key-value store frequently). It is impossible for
us to finish the join process only in memory because the
key-value store is too large to be placed in the memory
instead of the disk. Therefore, we use the times of calling
key-value store to model the cost in join process.

Fig. 6 query using join process

We extract the induced subgraph on Core(Q) from the
query in Listing 1, as well as the data graph in Figure 1.
Figure 6 shows the two induced subgraphs which need to be
considered in join process, next we use them to explain the
idea. The corresponding join result is given in Table 5.
Assume that C(?p1) = {<Mike>}, C(?p2) = {<Bob>},
C(?p3) = {T1,T2...T100} and C(?school) = {<PKU>}, later
we will join these variables’ candidates to get the final result.

Join process starts from ?p1 and the order in the original
strategy is ?p2, ?p3 and ?school. First we push all candidates
of ?p1 into MRT , so |MRT | = |C(?p1)| now. Later we join
?p1 and ?p2(this is the second case, only ?p1 in MRT), and

one answer (<Mike>, <Bob>) is added into the updated
MRT (now |MRT | = 1). Next, we join other edges of ?p1, as
in the BFS manner, ?p3 is selected and joined. When joining
?p3, the restriction is the edge linking ?p1 and ?p3 in the
query graph, and we can easily see that all candidates of ?p3
satisfy this restriction.

After joining ?p3, there is totally 100 answers in MRT ,
and all edges of ?p1 are already visited. Later in the BFS
manner, we need to deal with ?p2 and ?p3. If we manage the
edge between ?p3 and ?school first, each row of MRT
should be used to generate another candidate set of ?school,
which means we have to call key-value store 100 times.
After joining ?school, we have to consider the edge linking
?p2 and ?p3. This is a strict restriction and only one answer
is left after this step, i.e. (<Mike>,<Bob>,T1,<PKU>).
When joining ?p3 and ?p2, these two variables are already in
MRT and we should do as the first case. The cost in this step
is also 100 times of calling key-value store, and the total cost
of join process can be viewed as 202 if we use each call as a
unit.

However, if we manage the edge between ?p2 and ?p3
first(also the first case), the cost of this step will be 100.
Fortunately, this step will cut a lot of candidates and only an
answer survives. Later when we join ?p3 and ?school, the
cost is 1 and the total cost is 103. It can be seen that dealing
with circle first may be better, and this is usually true.
Although 103 is much smaller than 202, the final result only
contains a single record. We can assume that most
candidates are invalid, and what we should do is to optimize
the join strategy, so as to lower the total cost. In different
join strategies, intermediate result’s sizes vary a lot, while
the final result always remains unchanged. To optimize join
strategy is to reduce the size of intermediate result, because
the join cost is determined by IO cost, and the IO cost is
determined by the size of MRT in each step.

Now let’s formulate the join cost as follows:

Definition 8 Join Cost. Given a set of variables v1...vn and
their candidates and edges, the join cost is defined as the IO
cost of joining all variables: Join(v1...vn) = O(

∑m
i=1 S i). In

the formula, S i represents the size of MRT when dealing with
the i-th edge.(assume edge’s number is m, each join step uses
an edge)

It is discovered from the formula that the edges and the
final result are the same in all kinds of join strategies, so the
key point is to lower the size of MRT in all steps. Notice that
we don’t know the real result before we join a variable, so

10
Li ZENG et al.

the only choice is to design a better greedy algorithm. If we
start from different sources which are not directly connected,
then it will be hard to join two intermediate tables. In this
paper, join strategy always starts from a center and extends
to others in some kinds of searching manner(see Algorithm 2
for details).

The intermediate result is stored in MRT , and when
joining two variables(variable V1 is already in MRT while
variable V2 is not in MRT), we always generate other
candidate sets of V2 from MRT . Each row of MRT is a
result of the query(containing a set of query variables, V1,
V2, ...Vn), and each column corresponds to the mapping
vertices of a query variable Vi in the data graph. For a given
row pr of MRT , the i-th column of pr is a mapping vertex of
the i-th query variable Vi.(see Algorithm 3 for the usage of
MRT , which is a list < vector < int >> struct)

6.2 Multi-Join Strategy

The example in Figure 6 has a better answer, which can help
us to design a better greedy algorithm. If join process is
finished on the order ?p1-?p2-?p3-?school, and when joining
?p3 we consider two edges ?p1-?p3 and ?p2-?p3
simultaneously, then we will harvest minimal join cost. To
consider two edges simultaneously, we need to scan each
row of MRT , and generate another two candidate sets of ?p3
from <Mike> and <Bob> separately. Assume from <Mike>

we get a candidate set called set1, from <Bob> we get set2,
later we should intersect set1, set2 and C(?p3). The times of
calling key-value store are only 2 in this step, and
surprisingly, after this step, there is only one answer in MRT
instead of 100. Later the cost of joining ?school will also be
1, and the total cost is just 4 times of calling key-value store!

When considering the restriction of multiple edges
simultaneously, we can greatly cut the cost down. However,
try the order ?p1-?p3-?p2-?school, and it is found that the
total cost is 1+100+100+1=202 if we don’t adopt the new
idea. If we use the new idea, i.e. considering multiple edges
simultaneously, in this order the cost is also 202 because we
have to consider two edges for each answer in MRT . It’s out
of question that the join order is the most important part of
our algorithm, just like the matching order in subgraph
isomorphism problem. In this subsection, we will introduce
two ideas to lower the join cost: one is considering multiple
edges, the other is selecting a good order. We will present
our algorithms first and later analyze the cost of our
algorithm and explain why the new strategy is better than the
old one.

6.2.1 Multiple Edges

In our algorithm, a variable can only be joined once because
each time we join a new variable var, we will consider all the
edges between var and the set whose variables are already
joined. The whole join algorithm is described in Algorithm
2, and Algorithm 3 is used to join two variables(or join MRT
with a new variable), i.e. consider an unvisited edge.

The P2N index used in our algorithm is defined as follows:

Definition 9 P2N Index. P2N index is an array kept in
memory. Given a predicate’s ID, P2N returns the times it
occurs in data graph G. |E(G)| is used to denote the number

of all triples in the dataset, which can be acquired when we
build the database from this dataset.

Remark 1. Restriction of Edges If a variable connects to
some variables in the joined set js, the corresponding edge
set is es, then the restriction of es is stronger than the
restriction of any single edge in es.

Assumption 1. Result Monotony.
The size of MRT never decreases when the join process pro-
ceeds.

The idea of considering multiple edges simultaneously is
intuitively when analyzing the example in Figure 6 and it is
implemented in Algorithm 3. When we join two variables, if
the new variable also connects to other variables in the joined
set js, then we can consider the restrictions all at once. If we
only consider one edge at this time, then the cost to join other
edges later will be higher following the Assumption 1, which
is usually true. In addition, Remark 1 tells us that when we
join MRT with a new variable, the result will be smaller after
this step if we consider all the corresponding edges rather
than any one of them.

Using the cost model in Definition 8 to analyze Figure 6,
if we don’t consider the restriction of ?p2-?p3 when we join
?p3, then the cost of joining ?p2-?p3 and ?p1-?p3 will be
S 2 + S 3(if we join ?p2-?p3 before ?p3-?school) or S 2 + S 4(if
we join ?p3-?school before ?p2-?p3), which is greater than
2 × S 2(S 2 is the size of MRT after ?p1-?p2 joined). It is
obvious that considering the restrictions of multiple edges
simultaneously is always better, which helps us to save a lot
of time. In addition, the restrictions of multiple edges must
be combined when we are going to select a join order, which
is talked about in the next section.

Front. Comput. Sci.
11

Algorithm 2 multi-join
Input: query graph Q and variables’ candidates.
Output: all valid matches.
1: do the preprocessing using all neighbors(not variable);
2: for all variable var in Core(Q) do
3: initialize var’s score as size of C(var);
4: use Algorithm 5 to select a variable v and push it in set js;
5: update v’s neighbors’ score using Algorithm 4;
6: for all id in C(v) do
7: MRT.push_back(vector < int > (1, id));
8: //this column in MRT corresponds to variable v;
9: while set js != Core(Q) do

10: use Algorithm 5 to select a variable curvar;
11: use Algorithm 3 to join MRT and C(curvar);
12: mark this edge as dealed, push curvar into stack js;
13: update curvar’s neighbors’ score using Algorithm 4;

Algorithm 3 join_two
Input: query graph Q, current table MRT and joining variable var.
1: if C(var) is empty then
2: return false;
3: for all ans in MRT do
4: set the temporary table tmp as empty;
5: for all ele in ans do
6: //ele is the i-th field of this answer, it is a result of variable

var2;
7: if no edge between var and var2 in Q then
8: continue;
9: use key-value store to generate var’s another candi-

dates(named list) from ele;
10: if tmp is empty then
11: tmp = intersect(list, C(var));
12: else
13: tmp = intersect(list, tmp);
14: for all ele in tmp do
15: add ele to MRT , the new field corresponding to variable

var;
16: if tmp is empty then
17: remove this record;

6.2.2 Order Selection

The order selection is nearly the most important part of the
join strategy, and perhaps even so in the whole system. The
greedy algorithm is presented in Algorithm 2, and the next
variable is chosen based on its score. Each variable is
assigned a score, which represents its significance. In each
step, only the variable curvar with the lowest score is chosen
to be joined with MRT , and the scores of other variables(in
Core(Q) \ js) are updated by the curvar. The update of the
scores is just like the Dijkstra Algorithm which is used to
solve the shortest path problem.

Now the problem is how to assign and update variables’
scores. We give the solution in Algorithm 4 and Algorithm 5
and will analyze why this works in next subsection. The

Algorithm 4 update neighbors’ score
Input: query graph Q, variable var, joined set js.
1: for all neigh in N(var) do
2: if neigh ∈ js then
3: continue;
4: assume pid is this edge’s ID;
5: double prob = P2N[pid]/|E(G)|;
6: neigh’s score sco can be updated by sco = sco × prob;

definition of the score is given below:
Definition 10 Score. Given current joined set js, result

MRT and variable var ∈ Core(Q) \ js, the edge set es
contains all edges that connect var with js.
S core(var) = |C(var)| ×

∏
(P2N(pi)
|E(G)|) + |es|, pi ∈ es.

When the join process starts, we firstly initialize each
variable’s score as the size of this variable’s candidates.
Each time we push a new variable into js and update all its
neighbors’ score based on the formula in Definition 10.
Notice that the item |es| in this formula is not updated in this
way, Algorithm 4 only adds an addend to the corresponding
score. We call this item “basic item”, and name another as
“foresight item”. The former is used to estimate the IO cost
in this step, while the latter to give a rough estimate of the
table size after this step(and can be used to estimate the cost
in next step). Notice that the cost in each step is determined
by MRT , but if multiple edges exist this time, for example, 2
edges exist, then the cost will be 2 × |MRT |. In a word,
“basic item” is never kept with a variable’s score and the
score updated is not the real score for the variable.

In each step of join process, the real scores are computed
for each variable by adding the final item, and we compare
them to select a variable with the minimal score in Algorithm
5. Let’s review the query graph in Figure 6, at the begining
we assign (1, 1, 100, 1) to ?p1, ?p2, ?p3 and ?school as scores.
To start, we will compute the real scores of these variables,
i.e. (1, 1, 100, 1). Then we select ?p1 and update variables’
scores as (-1, 1

202 , 10000
202 , 1).(Notice that ?p1 is in js now, total

triple number is 202 in data graph) Next, we recompute the
real scores of all variables, and the result is (-1, 1 + 1

202 , 1 +
10000

202 , INF).(INF represents the maxium value of double type)
Of course we choose to join ?p2 in this turn, and later the
updated scores will be (-1, -1, 10000

2022 , 1). We can compute the
real scores currently and join ?p3 and ?school in order.

6.3 Analysis

We have declared that considering the restrictions of
multiple edges simultaneously is always better in the last

12
Li ZENG et al.

Algorithm 5 select a variable with minimal score
Input: query graph Q, joined set js.
Output: a variable to be joined.
1: set minRK = INF and minVar = −1;
2: for all var in Core(Q) do
3: if no edge between var and js then
4: set var’s real score as INF, continue;
5: num = 0; //this value can be adjusted
6: for all neigh in N(var) do
7: if neigh ∈ js then
8: num + +;
9: assume var’s score is sco;

10: set sco2 = sco + num;
11: if sco2 < minRK, set minRK = sco2 and minVar = var;
12: return minVar;

subsection, here we will analyse the efficiency of order
selection. In Definition 10, P2N index is used to estimate
the probability that a triple can satisfy the restriction of the
corresponding edge, i.e. P2N(pi)

|E(G)| . Without restrictions, the
number of all results after this step will be |MRT | × |C(var)|.

Given the restriction of an edge, we can estimate the
result’s size using probability, i.e. |MRT |×|C(var)|× P2N(pi)

|E(G)| .
If multiple edges exist in this step, this means that a triple in
the result should satisfy all the restrictions. Following
Remark 1, we regard the probabilities of different edges as a
unique distribution, and multiply them to get the combined
probability, which are presented in Definition 10. In our cost
model, we have considered the IO cost in two steps, i.e.
current step(“basic item”) and next step(“foresight item”).
The cost is formulated as the sum of the cost in two steps,
just as the definition of our cost model.

Assumption 2. Partial Order.
Given two edges e1 and e2, their variables are (v11,v12) and
(v21,v22) respectively. If P2N[e1] < P2N[e2], C(v11) < C(v21)
and C(v12) < C(v22), then the result of joining e1 is smaller
than the result of joining e2.

If Assumption 2 is true, then our cost model in Definition
10 can be used to represent the real IO cost in join process
because it keeps the partial order. Following the assumptions
above, we believe that at most time, the new algorithm is
better than the old one if our cost model can represent the
real case. The main difference between two algorithms is the
searching order(old strategy uses BFS). It is impossible to
prove that new algorithm always harvests a better
performance than the old one because we have considered
the cost of next step in cost model, which means that our
algorithm is a heuristic method like A*. However, lots of
experiments on all kinds of datasets show that the new join

strategy is wonderful.
Now let’s analyze the complexity of the new join strategy.

It’s obvious that subgraph isomorphism problem can be
transformed into subgraph homomorphism problem in
polynomial time. In the gStore system, subgraph
homomorphism problem can be transformed into the join
process in this section, and the time of transformation is also
polynomial. Therefore, we can infer that the join process is
an NP-Complete problem, because the subgraph
isomorphism is an NPC problem.

The query graph is usually very small, so the cost of this
algorithm can be neglected and we only need to focus on the
IO cost. We denote Q’s induced subgraph on Core(Q) as
T Q, size of T Q’s vertex set as n and size of T Q’s edge set
as m. Compared with the large data graph G, we can view
n and m as constants. We denote Ci as the candidates of the
i-th variable in T Q, and it’s ok that the intersection of Ci and
C j(i , j) is not empty. Notice that VS∗-tree can’t guarantee
the size of candidates, so in the worst case, we only ensure
that |Ci| 6 |V(G)|.

Observation 1. Graphs in real life are sparse, connected
and the number of predicates won’t be too large, so it’s
guaranteed that |V(G)|2 � |E(G)| > |V(G)| � |P(G)|. (E(G)
is the set of all edges, while |P(G)| is the number of all
different predicates in G)

Assumption 3. The worst case of our algorithm occurs
when each predicate in data graph G shares equal number
of edges(i.e. triples), then P2N(pi)

|E(G)| = 1
|P(G)| .

Following Observation 1 and Assumption 3, we can
estimate the upper bound of join cost in each step. For
example, the cost of the first step is min|Ci|, and the upper
bound is |V(G)|. After the first step, the upper bound of
|MRT | is |V(G)| × |V(G)| × 1

|P(G)| by our cost model. As a
result, if we don’t consider multiple edges when joining a
new variable, the cost in step i will be |V(G)|i+1

|P(G)|i , i = 0...n − 2.
Here we only consider n − 1 edges in T Q, but there are

m(m > n) edges in T Q. In our algorithm, we must consider
the extra edges as multiple edges when joining a new
variable. Following Assumption 1, the worst case is that
these extra edges are all considered when joining the final
variable, and the IO cost will be (m − n + 1) × |V(G)|n−1

|P(G)|n−2 . Now
we sum all and the total cost in worst case will be∑n−2

i=0
|V(G)|i+1

|P(G)|i + (m − n + 1) × |V(G)|n−1

|P(G)|n−2 , so we can claim that the

time cost of our algorithm is O((m − n + 1) × |V(G)|n−1

|P(G)|n−2). The
memory cost is determined by the maxium MRT , and we
can represent it as O(n × |V(G)n−1

|P(G)|n−2).

Front. Comput. Sci.
13

7 Experiment

In this section, we evaluate our method over both real and
synthetic datasets and compare it with the state-of-the-art
algorithms, such as virtuoso-openlinksw [12],
apache-jena [13] and the original gStore system. Our
optimizations mentioned in this paper are implemented in
the new gStore system, and we denote it as gstore2, while
the old system is denoted as gstore1. For comparison
between gstore1 and gstore2, we will compare the efficiency
of VS∗-tree, the cost of join process and the time cost in
total. Compared with other graph database systems, i.e.
virtuoso and jena, only the total cost (response time) will be
compared.

7.1 Datasets & Setup

We use LUBM [14] as synthetic datasets and DBpedia as real
datasets in our experiments. Statistics about RDF graphs are
given in Table 6 and all the queries are given in Appendix.

Table 6 Graph Datasets.
Dataset Edge Predicate Entity

LUBM100M 106, 909, 064 18 17, 473, 142
LUBM200M 213, 874, 370 18 34, 874, 223
LUBM300M 320, 711, 327 18 52, 254, 606
LUBM500M 500, 000, 000 18 81, 342, 489
DBpedia1B 1, 111, 481, 066 124, 034 139, 493, 254

We conducted all experiments on a computer with 2.8 GHz
Intel(R) Xeon(R) processor, 4T disk and 128 GB memory
running CentOS7. We finish the experiment with the latest
version of other graph database systems: apache-jena 3.0.1
and virtuoso-openlinksw 7.2.

Note that the original gStore1) fails to run on
LUBM500M and DBpedia1B; while new gStore, Jena and
Virtuoso work on all datasets used in this paper. We do not
report the experiment results if the systems can not work.

7.2 Comparison of VS∗-tree

We compare VS∗-tree’s efficiency here, which is scaled by
candidates’ number after the filter. The result is in Figure
7, and the corresponding dataset is LUBM300M. We use all
queries in this subsection, and for queries which don’t use
the “filter and join” framework(Q12, Q13, Q20 and Q21), the

1) This is the centralized system. The distributed gStore system can run
these RDF datasets with billion triples. We only compare the centralized
systems in this paper.

numbers of their final results are used in Figure 7. Each query
may have many variables that need to retrieve candidates, and
we only select the first variable of a query to be displayed.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

101

102

103

104

105

106

107

C
an

di
da

te
s’

nu
m

gstore1
gstore2

Fig. 7 Candidates’ number after filtered by VS∗-tree on LUBM 300M

Through the comparison, it is discovered that the new
encoding method in Section 5 is never worse than the old
one. Furthermore, in some queries, it reduces the number of
candidates by 100 times, or even reduces the number to 0.
However, for queries with a very large number of
candidates, the new encoding method does not improve a lot.
The reason is that the minimum number of candidates we
can get is already very large in those cases, even if we
consider the restrictions of the neighborhood precisely rather
than use hash values to represent them roughly. In such
cases, the remaining invalid candidates can only be removed
in the join process.

7.3 Cost of Join Process

This subsection also uses LUBM300M as the dataset, and the
queries are the same as last subsection. Here we focus on the
time cost in join process, so as to verify the effectiveness of
the new join strategy in Section 6. The result in Figure 8
shows that the new strategy never performs worse than the
old one. Sometimes, it even helps lower the time cost by 30
times. In Q12, Q13, Q20 and Q21, the cost in join process is
0 because these queries do not need the join process if using
the new strategy.

The result can also prove that our cost model in
Definition 10 is close to the real cost in join process.
Otherwise, the new join strategy will not work well and may
choose an awful edge in some steps, which results in a high
cost of join process.

14
Li ZENG et al.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

101

102

103

104

105

106

Jo
in

Ti
m

e
(i

n
m

s)

gstore1
gstore2

Fig. 8 Cost in the join process

7.4 Comparison of Total Cost

In the last two subsections, we only compare some
important parts of the system between gstore1 and gstore2.
Here we will conduct a comprehensive experiment in Figure
9, Figure 11, Figure 12 and Figure 10. Generally speaking,
the new gStore system (gStore2) beats the old system
(gStore1) in almost all queries of all figures, which indicates
that our optimization methods are very effective. In some
queries like Q2, Q13 and Q21 of LUBM, gstore2 is more than
10 times faster than gstore1. The reason is that gstore2 uses
key-value store directly to answer Q13 and Q21, bringing a
big gain. As for Q2, new gStore doesn’t need to do join
process while gstore1 has to retrieve candidates for all
variables and do join process, which is a heavy cost due to a
large size of candidates.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

100

101

102

103

104

105

106

Q
ue

ry
R

es
po

ns
e

Ti
m

e
(i

n
m

s)

gstore1
gstore2
jena
virtuoso

Fig. 9 Query Performance over LUBM300M

On LUBM300M and LUBM500M, gStore2 runs the
fastest on 8 queries, while 1 for jena and 12 for virtuoso.
However, Figures 9 and 11 shows that gStore2 wins the first
place for all time-consuming queries (the response times are
larger than 10 seconds) except for Q2 in LUBM500M. In

other words, gStore2 is more robust to time-consuming
queries. Although Virtuoso wins 12 queries, they are almost
fast queries (the response time is less than 1 second).
Furthermore, gstore2 wins virtuoso a lot in some queries:
Q3, Q7 and Q16(these contain circles), Q13 and Q21(these
only contain one triple).

Figure 10 shows that our system (gStore 2) has a strong
scalability because the time of query processing doesn’t
grow exponentially as data size grows.(Q16 is selected
because its time cost is the highest) Generally, processing
time grows with no more than two times the speed of
dataset’s size. In addition, our system can run very large
datasets(like LUBM500M) within 100s, which is better than
other systems(gstore1, jena and virtuoso) because none of
them can answer all queries within 100s on LUBM500M.

100 200 300 400 500

104

105

Data Size (in 106 triples)

Q
ue

ry
R

es
po

ns
e

Ti
m

e
(i

n
m

s)

gstore2
jena

virtuoso

Fig. 10 Performance of Q16 over LUBM

On DBpedia1B, gstore2 always performs better except for
Q0, which is a star graph with only one variable. Our system
uses too much time in VS∗-tree when answering Q0, while
the final result number of this query is only 10. However,
gStore2 runs the fastest on other queries.

To sum up, the new gStore system has advantages on 4
kinds of queries:

• queries which only contain 1 triple
• queries which have some satellites(see the definition of

S at(Q) in Table 2 for the meaning of a satellite)
• queries on which cost of retrieving is much smaller than

cost of join
• queries which contain circles

Front. Comput. Sci.
15

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

100

101

102

103

104

105

Q
ue

ry
R

es
po

ns
e

Ti
m

e
(i

n
m

s)

gstore2
jena
virtuoso

Fig. 11 Query Performance over LUBM500M

Besides, our system has a good scalability, which is important
for real-life applications.

Q0 Q1 Q2 Q3 Q4 Q5

101

102

103

104

105

Q
ue

ry
R

es
po

ns
e

Ti
m

e
(i

n
m

s)

gstore2
jena
virtuoso

Fig. 12 Query Performance over DBpedia 1B

8 Related Work

Ullmann [15] and VF2 [16] are the two early efforts for
subgraph isomorphism problem, and the key problem is how
to select a good matching order. Ullmann uses depth-first
search strategy, while VF2 considers the connectivity as
pruning strategy. In order to speed up query response time,
most subgraph search methods pre-compute some structural
indices to reduce the search space. They assume that the
data graph is a vertex-labeled graph, and build indices based
on vertex labels. For example, SPath [17] constructs an
index by neighborhood signature that summarizes
vertex-labels within the k-neighborhood subgraph of each
vertex. In addition, SPath generates a matching order based
on the infrequent-paths first strategy to resolve the
limitations of only considering vertices and edges. For each
vertex in a data graph, NOVA [18] uses a vector to store the

label distribution of its neighborhood vertices. ASP [19]
divides all edges in a data graph into several classes
according to vertex labels and uses bitmap structures to
indices them; SSP [20] extends ASP and proposes some
optimizations to further improve query performance.

The problem of existing methods is the super-linear space
complexity of the index structure. Jinsoo Lee et al. [21]
re-implements some of the above methods and provides a
fair comparison of them. Then, they present a solution,
called TurboISO [22] to define a concept of the
neighborhood equivalence class(NEC). All query vertices in
the same NEC have the same matching data vertices. Hence,
when TurboISO finds all subgraph matches, only
combinations for each NEC are generated. In a word,
TurboISO merges similar vertices and enumerates all paths
to find the best matching order.

TurboHOM++ [23] further extends TurboISO to handle
SPARQL queries over RDF graphs. BoostIso [24] extends
the concept of neighborhood equivalence class in the data
graph and defines four types of relationships between
vertices in the data graph to further reduce duplicate
computation. gStore [1] uses the idea of graph encoding to
find candidates, while Nauty [25] prefinds all automorphism
within a data graph, so as to lower the cost of subgraph
isomorphism. QuickSI [26] generates a matching order
based on the infrequent-labels first strategy.

Recently, CFL-Match [27] defines a Core-Forest-Leaf
decomposition strategy and a cost model to select a good
matching order. It divides the query graph into core
part(with circles), forest part(no circles, nodes’ degree>1)
and leaf part(nodes’ degree=1). Subgraph matching should
always begin from core part, then forest part, and leaf part at
last. The matching order within each part is determined by
the cost model, which computes the cost of each path in
each step. The path selected each time is the one with
minimal growth of result size, and after dealing with this
path, a new growing path will be selected.

Compared with CFL-Match, our system doesn’t think that
circles should always be handled first for a specific query,
especially when edges contained in this circle are all frequent
in the data graph. Instead, we design a cost model to estimate
the cost of each step in join process. In addition, our cost
model doesn’t estimate cost for each path, but analyses the
cost for each edge and considers the cost of next and current
steps. Adjusting the cost model is more flexible after joining
an edge than joining a path. Furthermore, for leaf part, we
don’t prepare candidates for them but generate their solutions
directly at last. To the best of our knowledge, we are the

16
Li ZENG et al.

first to propose an efficient cost model and join strategy in
SPARQL query answering problem.

9 Conclusion

In this work, we redesign the gStore system to speed up
SPARQL query processing. We study the subgraph search
problem over a large general graph and propose several
important strategies to optimize the original system. Firstly,
we choose different query plan for query graphs with varied
structures. In addition, the encoding method is improved to
reduce the number of candidates for variables in the query
graph. Most important of all, a cost model is built in Section
6 and an efficient join method is used to lower the main part
of the cost.

Extensive experiments over large datasets confirm the
superiority of our solutions. In the future, we will go on
optimizing the gStore system and still keep it as open source.
In Section 7 we have discovered that gStore performs worse
than other systems on some queries due to the huge cost of
retrieving candidates. Therefore, we will find a solution for
this problem later. Furthermore, optimization of the join
strategy is still a key point and we won’t stop working on it.

10 Acknowledgement.

This work is supported by National Natural Science
Foundation of China (NSFC)-Young Excellent Talent
Project under grant 61622201.

References

1. Zou L, Mo J H, Chen L, Özsu M T, and Zhao D Y. Gstore: answering

SPARQL queries via subgraph matching. In: Proceedings of VLDB

Endowment, 2011, 4(8):482–493.

2. Bollacker K D, Cook R P, and Tufts P. Freebase: a shared database of

structured general human knowledge. In: Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence, 2007, 1962–1963.

3. Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes P

N, Hellmann S, Morsey M, Kleef P V, Auer S, Bizer C. Dbpedia -

a large-scale, multilingual knowledge base extracted from wikipedia.

Semantic Web, 2015, 6(2):167–195.

4. Neumann T, Weikum G. RDF-3X: a RISC-style engine for RDF. In:

Proceedings of VLDB Endowment, 2008, 1(1):647–659.

5. Neumann T, Weikum G. The RDF-3X engine for scalable management

of RDF data. The VLDB Journal, 2009, 19(1):91–113.

6. Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for se-

mantic web data management. In: Proceedings of VLDB Endowment,

2008, 1(1):1008–1019.

7. Zeng K, Yang J C, Wang H X, Shao B, and Wang Z Y. A distributed

graph engine for web scale RDF data. In: Proceedings of VLDB En-

dowment, 2013, 6(4):265–276.

8. Zou L, Özsu M T, Chen L, Shen X C, Huang R Z, Zhao D Y. Gstore:

a graph-based SPARQL query engine. The VLDB Journal, 2014,

23(4):565–590.

9. Aluç G. Workload matters: a robust approach to physical RDF

database design. PhD thesis, University of Waterloo, 2015.

10. Ingalalli V, Ienco D, Poncelet P, Villata S. Querying RDF data using

a multigraph-based approach. In: Proceedings of Extending Database

Technology, 2016, 245–256.

11. Nabti C, Seba H. A simple algorithm for subgraph queries in big

graphs. arXiv preprint arXiv:1703.05547, 2017.

12. Erling O. Virtuoso, a hybrid rdbms/graph column store. IEEE Data

Engineering Bulletin, 2012, 35(1):3–8.

13. Mcbride B. Jena: a semantic web toolkit. IEEE Educational Activities

Department, 2002.

14. Guo Y B, Pan Z X, Heflin J. Lubm: a benchmark for owl knowledge

base systems. Web Semantics Science Services & Agents on the World

Wide Web, 2005, 3(2–3):158–182.

15. Ullmann J R. An algorithm for subgraph isomorphism. Journal of the

ACM, 1976, 23(1).

16. Cordella L P, Foggia P, Sansone C, Vento M. A (sub)graph isomor-

phism algorithm for matching large graphs. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2004, 26(10).

17. Zhao P X, Han J W. On graph query optimization in large networks.

In: Proceedings of VLDB Endowment, 2010.

18. Zhu K, Zhang Y, Lin X M, Zhu G P, Wang W. Nova: A novel and effi-

cient framework for finding subgraph isomorphism mappings in large

graphs. In: Proceedings of Database Systems for Advanced Applica-

tions, 2010.

19. Peng P, Zou L, Chen L, Lin X M, Zhao D Y. Subgraph search over mas-

sive disk resident graphs. In: Proceedings of Scientific and Statistical

Database Management Conference, 2011.

20. Peng P, Zou L, Chen L, Lin X M, Zhao D Y. Answering subgraph

queries over massive disk resident graphs. World Wide Web, 2016,

19(3):417–448.

21. Lee J, Han W S, Kasperovics R, Lee J H. An in-depth comparison of

subgraph isomorphism algorithms in graph databases. In: Proceedings

of VLDB Endowment, 2012, 6(2):133–144.

22. Han W S, Lee J, Lee J H. Turboiso: towards ultrafast and robust sub-

graph isomorphism search in large graph databases. In: Proceedings

of SIGMOD Conference, 2013, pages 337–348.

23. Kim J, Shin H, Han W S, Hong S, Chafi H. Taming subgraph isomor-

phism for RDF query processing. In: Proceedings of VLDB Endow-

ment, 2015, 8(11):1238–1249.

24. Ren X G, Wang J H. Exploiting vertex relationships in speeding up

subgraph isomorphism over large graphs. In: Proceedings of VLDB

Endowment, 2015, 8(5):617–628.

Front. Comput. Sci.
17

25. McKay B D, Piperno A. Practical graph isomorphism, {II}. Journal of

Symbolic Computation, 2014, 60(0):94–112.

26. Shang H C, Zhang Y, Lin X M, Yu J X. Taming verification hardness:

an efficient algorithm for testing subgraph isomorphism. In: Proceed-

ings of VLDB Endowment, 2008, 1(1):364–375.

27. Bi F, Chang L J, Lin X M, Qin L, Zhang W J. Efficient subgraph

matching by postponing cartesian products. In: Proceedings of the

2016 International Conference on Management of Data, 2016, 1199–

1214.

28. Atre M, Chaoji V, Zaki M J, Hendler J A. Matrix "bit" loaded: a

scalable lightweight join query processor for rdf data. In: Proceedings

of International Conference on World Wide Web, 2010, 41–50.

29. Peng P, Zou L, Özsu M T, Chen L, Zhao D Y. Processing SPARQL

queries over distributed RDF graphs. The VLDB Journal, 2016.

11 Appendix

11.1 LUBM queries

This queries come from two places. Q1 ∼ Q7 come from [28]
and [29]. Q8 ∼ Q21 come from [8] and [14].

Listing 6 LUBM Q1

select ?x where
{
?x <rdf: type> <ub:GraduateStudent>.
?y <rdf: type> <ub:University>.
?z <rdf: type> <ub:Department>.
?x <ub:memberOf> ?z.
?z <ub:subOrganizationOf> ?y.
?x <ub:undergraduateDegreeFrom> ?y.
}

Listing 7 LUBM Q2

select ?x where
{
?x <rdf: type> <ub:Course>.
?x <ub:name> ?y.
}

Listing 8 LUBM Q3

select ?x where
{
?x <rdf: type> <ub:UndergraduateStudent>.
?y <rdf: type> <ub:University>.
?z <rdf: type> <ub:Department>.
?x <ub:memberOf> ?z.
?z <ub:subOrganizationOf> ?y.
?x <b:undergraduateDegreeFrom> ?y.
}

Listing 9 LUBM Q4

select ?x ?y1 ?y2 ?y3 where

{
?x <ub:worksFor> <http :// www.Department0.

University0.edu>.
?x <rdf: type> <ub: FullProfessor >.
?x <ub:name> ?y1.
?x <ub:emailAddress> ?y2.
?x <ub:telephone> ?y3.
}

Listing 10 LUBM Q5

select ?x where
{
?x <ub:subOrganizationOf> <http :// www.

Department0.University0.edu>.
?x <rdf: type> <ub:ResearchGroup>.
}

Listing 11 LUBM Q6

select ?x ?y where
{
?y <ub:subOrganizationOf> <http :// www.

University0.edu>.
?y <rdf: type> <ub:Department>.
?x <ub:worksFor> ?y.
?x <rdf: type> <ub: FullProfessor >.
}

Listing 12 LUBM Q7

select ?x ?y ?z where
{
?x <rdf: type> <ub:UndergraduateStudent>.
?y <rdf: type> <ub: FullProfessor >.
?z <rdf: type> <ub:Course>.
?x <ub:advisor> ?y.
?x <ub:takesCourse> ?z.
?y <ub:teacherOf> ?z.
}

Listing 13 LUBM Q8

select ?X where
{
?X <rdf: type> <ub:GraduateStudent>.
?X <ub:takesCourse> <http :// www.

Department0.University0.edu/GraduateCourse0>.
}

Listing 14 LUBM Q9

select ?X ?Y ?Z where
{
?X <rdf: type> <ub:GraduateStudent>.
?Y <rdf: type> <ub:University>.
?Z <rdf: type> <ub:Department>.
?X <ub:memberOf> ?Z.
?Z <ub:subOrganizationOf> ?Y.
?X <ub:undergraduateDegreeFrom> ?Y.
}

18
Li ZENG et al.

Listing 15 LUBM Q10

select ?X where
{
?X <rdf: type> <ub: Publication >.
?X <ub:publicationAuthor> <http :// www.

Department0.University0.edu/

AssistantProfessor0 >.
}

Listing 16 LUBM Q11

select ?Y1 ?Y2 ?Y3 where
{
?X <rdf: type> <ub: FullProfessor >.
?X <ub:worksFor> <http :// www.Department0.

University0.edu>.
?X <ub:name> ?Y1.
?X <ub:emailAddress> ?Y2.
?X <ub:telephone> ?Y3.
}

Listing 17 LUBM Q12

select ?X where
{
?X <ub:memberOf> <http :// www.Department0.

University0.edu>.
}

Listing 18 LUBM Q13

select ?X where
{
?X <rdf: type> <ub:UndergraduateStudent>.
}

Listing 19 LUBM Q14

select ?X ?Y where
{
?X <rdf: type> <ub:Student>.
?Y <rdf: type> <ub:Course>.
?X <ub:takesCourse> ?Y.
<http :// www.Department0.University0.edu/

AssociateProfessor0> <ub:teacherOf> ?Y.
}

Listing 20 LUBM Q15

select ?X where
{
?X <rdf: type> <ub:UndergraduateStudent>.
?Y <rdf: type> <ub:Department>.
?X <ub:memberOf> ?Y.
?Y <ub:subOrganizationOf> <http :// www.

University0.edu>.
?X <ub:emailAddress> ?Z.
}

Listing 21 LUBM Q16

select ?X ?Y ?Z where
{
?X <rdf: type> <ub:UndergraduateStudent>.
?Z <rdf: type> <ub:Course>.
?X <ub:advisor> ?Y.
?Y <ub:teacherOf> ?Z.
?X <ub:takesCourse> ?Z.
}

Listing 22 LUBM Q17

select ?X where
{
?X <rdf: type> <ub:GraduateStudent>.
?X <ub:takesCourse> <http :// www.

Department0.University0.edu/GraduateCourse0>.
}

Listing 23 LUBM Q18

select ?X where
{
?X <rdf: type> <ub:ResearchGroup>.
?X <ub:subOrganizationOf> <http :// www.

University0.edu>.
}

Listing 24 LUBM Q19

select ?X ?Y where
{
?Y <rdf: type> <ub:Department>.
?X <ub:worksFor> ?Y.
?Y <ub:subOrganizationOf> <http :// www.

University0.edu>.
}

Listing 25 LUBM Q20

select ?X where
{
<http :// www.University0.edu> <ub:

undergraduateDegreeFrom> ?X.
}

Listing 26 LUBM Q21

select ?X where
{
?X <rdf: type> <ub:UndergraduateStudent>.
}

11.2 DBpedia queries

These queries are written by us, imitating queries in other
benchmarks.

Front. Comput. Sci.
19

Listing 27 DBpedia Q0

select ?v0 where
{
?v0 <http :// www.w3.org/1999/02/22−rdf−syntax−ns#type

> <http://dbpedia.org / class /yago/

LanguagesOfBotswana> .
?v0 <http :// www.w3.org/1999/02/22−rdf−syntax−ns#type

> <http :// dbpedia.org / class /yago/

LanguagesOfNamibia> .
?v0 <http :// www.w3.org/1999/02/22−rdf−syntax−ns#type

> <http://dbpedia.org /ontology /Language> .
}

Listing 28 DBpedia Q1

select ?v0 where
{
?v0 <http :// dbpedia.org /ontology /associatedBand> <http

:// dbpedia.org / resource /LCD_Soundsystem> .
}

Listing 29 DBpedia Q2

select ?v2 where
{
<http :// dbpedia.org / resource /!! Destroy−Oh−Boy!!> <

http://dbpedia.org / property / title > ?v2 .
}

Listing 30 DBpedia Q3

select ?v0 ?v2 where
{
?v0 <http :// dbpedia.org /ontology / activeYearsStartYear

> ?v2 .
}

Listing 31 DBpedia Q4

select ?v0 ?v1 ?v2 where

{
?v0 <http :// dbpedia.org / property / dateOfBirth> ?v2 .
?v1 <http :// dbpedia.org / property /genre> ?v2 .
}

Listing 32 DBpedia Q5

select ?v0 ?v1 ?v2 ?v3 where
{
?v0 <http :// dbpedia.org / property / familycolor > ?v1 .
?v0 <http :// dbpedia.org / property / glotto > ?v2 .
?v0 <http :// dbpedia.org / property / lc> ?v3 .
}

Li Zeng received his BS degree in

Computer Science at Peking Univer-

sity in 2016. Now, he is a master stu-

dent of Peking University majoring in

Computer Science. His research inter-

ests include graph database and data

management.

Lei Zou, awardee of the NSFC Ex-

cellent Young Scholars Program in

2016, received his BS degree and

Ph.D. degree in Computer Science at

Huazhong University of Science and

Technology in 2003 and 2009, respec-

tively. Now, he is an associate profes-

sor in Peking University. His research

interests include graph database, knowledge graph data manage-

ment.

